Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.021
Filtrar
1.
FASEB J ; 38(8): e23590, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38656553

RESUMO

Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.


Assuntos
Hiperalgesia , Inflamação , Interleucina-6 , Microglia , Proteína Quinase C-épsilon , Fator de Transcrição STAT3 , Animais , Fator de Transcrição STAT3/metabolismo , Microglia/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteína Quinase C-épsilon/genética , Camundongos , Interleucina-6/metabolismo , Interleucina-6/genética , Inflamação/metabolismo , Hiperalgesia/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Ligação Proteica , Fosforilação , Dor/metabolismo , Adjuvante de Freund
2.
Drug Des Devel Ther ; 18: 1265-1275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651136

RESUMO

Background: Treating inflammatory pain (IP) continues to pose clinical challenge, because of the lack of effective pharmacological interventions. Microglial polarization serves as pivotal determinant in IP progress. Obacunone (OB), a low-molecular-weight compound with a diverse array of biological functions, having reported as an activator of nuclear factor E2-related factor 2 (Nrf2), exhibits anti-inflammatory property. However, it remains uncertain whether OB can alleviate IP by facilitating the transition of microglial polarization from the M1 to M2 state through modulating Nrf2/ heme oxygenase-1 (HO-1) pathway. Methods: We induced an mice IP model by subcutaneously administering Complete Freund's Adjuvant (CFA) into the hind paw. Paw withdrawal latency (PWL) in seconds (s) and paw withdrawal frequency (PWF) were employed to evaluate the establishment of the IP model, while a caliper was used to measure the maximal dorsoventral thickness of the mice paw. Nerve injury was assessed by Hematoxylin-Eosin (HE) Staining. Western blot and got conducted for detection of M1/M2 microglial polarization markers, Nrf2 and HO-1 in spinal cord tissues respectively. Results: In comparison to the control cohort, PWF, M1 phenotype marker iNOS, CD86, paw thickness increased significantly within CFA cohort, while PWL, M2 phenotype marker Arg-1, interleukin-10 (IL-10) decreased in the CFA group. In comparison to model cohort, OB treatment decreased PWF, paw thickness, M1 phenotype marker iNOS, CD86 significantly, while PWL, M2 phenotype marker Arg-1, IL-10, Nrf2, HO-1 increased significantly. The morphological injuries of sciatic nerve in CFA mice were obviously improved by OB treatment. OB inhibited the release of M1-related IL-1ß, CXCL1 but promoted M2-related TGF-ß, IL-10 in serum in CFA mice. The intervention of the Nrf2 inhibitor ML385 mitigated analgesic effect of OB. Conclusion: We demonstrate that OB is able to attenuate inflammatory pain via promoting microglia polarization from M1 to M2 and enhancing Nrf2/HO-1 signal. OB treatment may be a potential alternative agent in the treatment of IP.


Assuntos
Inflamação , Proteínas de Membrana , Microglia , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Heme Oxigenase-1/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Adjuvante de Freund , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
3.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542266

RESUMO

Numerous studies have indicated a link between vaccines and the exacerbation of autoimmune diseases including rheumatoid arthritis (RA). However, there is no consensus in clinical practice regarding the optimal timing of immunization. Therefore, this study aimed to investigate the impact of the 3Fluart influenza vaccine on the complete Freund's adjuvant (CFA)-induced chronic arthritis rat model and to identify new biomarkers with clinical utility. CFA was injected into the plantar surface of one hind paw and the root of the tail on day 0, and the tail root injection was repeated on day 1. Flu vaccination was performed on day 1 or 7. Paw volume was measured by plethysmometry, mechanonociceptive threshold by dynamic plantar aesthesiometry, neutrophil myeloperoxidase (MPO) activity, and vascular leakage using in vivo optical imaging throughout the 21-day experiment. Inflammatory markers were determined by Western blot and histopathology. CFA-induced swelling, an increase in MPO activity, plasma extravasation in the tibiotarsal joint. Mechanical hyperalgesia of the hind paw was observed 3 days after the injection, which gradually decreased. Co-administration of the flu vaccine on day 7 but not on day 1 resulted in significantly increased heme oxygenase 1 (HO-1) expression. The influenza vaccination appears to have a limited impact on the progression and severity of the inflammatory response and associated pain. Nevertheless, delayed vaccination could alter the disease activity, as indicated by the findings from assessments of edema and inflammatory biomarkers. HO-1 may serve as a potential marker for the severity of inflammation, particularly in the case of delayed vaccination. However, further investigation is needed to fully understand the regulation and role of HO-1, a task that falls outside the scope of the current study.


Assuntos
Artrite Experimental , Influenza Humana , Ratos , Animais , Humanos , Artrite Experimental/metabolismo , Adjuvante de Freund/efeitos adversos , Hiperalgesia/metabolismo , Inflamação , Vacinação , Progressão da Doença
4.
Front Immunol ; 15: 1353865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426111

RESUMO

Complete Freund's adjuvant (CFA) is used as a standard adjuvant for the induction of experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model in multiple sclerosis studies. Still, CFA induces glial activation and neuroinflammation on its own and provokes pain. In addition, as CFA contains Mycobacteria, an immune response against bacterial antigens is induced in parallel to the response against central nervous system antigens. Thus, CFA can be considered as a confounding factor in multiple sclerosis-related studies performed on EAE. Here, we discuss the effects of CFA in EAE in detail and present EAE variants induced in experimental animals without the use of CFA. We put forward CFA-free EAE variants as valuable tools for studying multiple sclerosis pathogenesis and therapeutic approaches.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Adjuvante de Freund , Esclerose Múltipla/complicações , Adjuvantes Imunológicos/farmacologia , Antígenos de Bactérias
5.
J Vis Exp ; (204)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38407332

RESUMO

This research delves into the consequences of consistent pinprick stimulation on preterm offspring to ascertain its long-term implications for pain sensitivity. The primary objective of this protocol was to investigate the impact of neonatal pinprick stimuli on the pain threshold in the later stages of life using a preterm rat model. By establishing this model, we aim to advance the research on understanding and managing early postnatal pain associated with prematurity. The findings of this study indicate that while the baseline thresholds to mechanical stimuli remained unaffected, there was a notable increase in mechanical hypersensitivity following complete Freund's adjuvant (CFA) injection in adult rats. Interestingly, compared with male rats, female rats demonstrated heightened inflammatory hypersensitivity. Notably, maternal behavior, the weight of the litters, and the growth trajectory of the offspring remained unchanged by the stimulation. The manifestation of altered nociceptive responses in adulthood after neonatal painful stimuli could be indicative of changes in sensory processing and the functioning of glucocorticoid receptors. However, further research is needed to understand the underlying mechanisms involved and to develop interventions for the consequences of prematurity and neonatal pain in adults.


Assuntos
Hipersensibilidade , Dor , Feminino , Masculino , Animais , Ratos , Dor/etiologia , Limiar da Dor , Sensação , Manejo da Dor , Adjuvante de Freund
6.
Zhen Ci Yan Jiu ; 49(1): 30-36, 2024 Jan 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38239136

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture(EA) on local inflammatory mediators and macrophage polarization, and immune cells in the spleen of mice with chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the immunoinflammatory regulatory mechanisms of EA in relieving pain and swelling in mice with chronic inflammatory pain. METHODS: Thirty C57BL/6 mice were randomly divided into control, model, and EA groups, with 10 mice in each group. Chronic inflammatory pain model were established by subcutaneous injection of 20 µL CFA solution in the left hind paw for 7 consecutive days. After modeling, mice in the EA group received EA at bilateral "Zusanli"(ST36) for 20 min (2 Hz/100 Hz, 1 mA) once a day for 18 consecutive days. Mechanical pain threshold, heat pain thresholds, and paw thickness were measured before and after mode-ling, and after interventions. Western blot was used to detect the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and NOD-like receptor protein 3 (NLRP3) in the paw tissue. Immunohistochemistry was used to detect the positive expression of M1-type macrophage marker inducible nitric oride synthase (iNOS) and M2-type marker CD206 in the paw, and flow cytometry was used to detect the proportion of F4/80+ CD11b+ macrophages, Ly6G+ CD11b+ neutrophils, and CD25+ Foxp3+ regulatory T cells (Treg) in the spleen. RESULTS: Compared with the control group, mechanical pain and heat pain thresholds were significantly reduced(P<0.000 1), while paw thickness, expressions of IL-1ß, TNF-α, and NLRP3 in the paw, and positive expression of M1 macrophage marker iNOS in the paw, the proportions of macrophages and neutrophils in the spleen were significantly increased (P<0.000 1, P<0.001) in the model group. Compared with the model group, mechanical pain threshold and heat pain thresholds, CD206 positive expression in the paw, and Treg cell proportion in spleen were significantly increased (P<0.01), while paw thickness, the expressions of IL-1ß, TNF-α and NLRP3 in the paw, as well as the positive expression of M1 macrophage marker iNOS in the paw, the proportions of macrophages and neutrophils in the spleen were significantly reduced (P<0.001, P<0.01, P<0.05)in mice of the EA group after intervention. CONCLUSIONS: EA may alleviate pain and swelling in mice with chronic inflammatory pain by regulating the numbers of macrophages, neutrophils, and Treg cells, as well as promoting M2 polarization of local macrophages and inhibiting the release of pro-inflammatory cytokines.


Assuntos
Dor Crônica , Eletroacupuntura , Camundongos , Animais , Fator de Necrose Tumoral alfa/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos Endogâmicos C57BL , Dor Crônica/genética , Dor Crônica/terapia , Interleucina-1beta , Adjuvante de Freund
7.
Am J Pathol ; 194(2): 296-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245251

RESUMO

This study investigates the regulatory mechanisms of synovial macrophages and their polarization in the progression of temporomandibular joint osteoarthritis (TMJOA). Macrophage depletion models were established by intra-articular injection of clodronate liposomes and unloaded liposomes. TMJOA was induced by intra-articular injection of 50 µL Complete Freund's Adjuvant and the surgery of disc perforation. The contralateral joint was used as the control group. The expression of F4/80, CD86, and CD206 in the synovium was detected by immunofluorescence staining analysis. Hematoxylin and eosin staining and TMJOA synovial score were detected to show the synovial changes in rat joints after TMJOA induction and macrophage depletion. Changes in rat cartilage after TMJOA induction and macrophage depletion were shown by safranin fast green staining. The bone-related parameters of rats' joints were evaluated by micro-computed tomography analysis. The TMJOA model induced by Complete Freund's Adjuvant injection and disc perforation aggravated synovial hyperplasia and showed a significant up-regulation of expression of F4/80-, CD86-, and CD206-positive cells. F4/80, CD86, and CD206 staining levels were significantly decreased in macrophage depletion rats, whereas the synovitis score further increased and cartilage and subchondral bone destruction was slightly aggravated. Macrophages were crucially involved in the progression of TMJOA, and macrophage depletion in TMJOA synoviocytes promoted synovitis and cartilage destruction.


Assuntos
Cartilagem Articular , Osteoartrite , Sinovite , Ratos , Animais , Microtomografia por Raio-X , Ativação de Macrófagos , Adjuvante de Freund/efeitos adversos , Adjuvante de Freund/metabolismo , Lipossomos/efeitos adversos , Lipossomos/metabolismo , Cartilagem Articular/metabolismo , Articulação Temporomandibular/metabolismo , Sinovite/metabolismo , Remodelação Óssea , Osteoartrite/metabolismo
8.
Neurol Res ; 46(2): 165-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899006

RESUMO

BACKGROUND: Inflammatory pain is caused by damaged tissue or noxious stimuli, accompanied by the release of inflammatory mediators that often leads to severe hyperalgesia and allodynia with limited therapy options. Recently, a novel mitochondrial-derived peptide (named MOTS-c) was reported to regulate obesity, metabolic homeostasis and inflammatory response. The aim of this study was to investigate the effects of MOTS-c and its related regulatory mechanisms involved in inflammatory pain. METHODS: Male Kunming mice (8-10 weeks-old) were intraplantar injected with formalin, capsaicin, λ-Carrageenan and complete Freund adjuvant (CFA) to establish acute and chronic inflammatory pain. The effects of MOTS-c on the above inflammatory pain mice and its underlying mechanisms were examined by behavioral tests, quantitative polymerase chain reaction (qPCR), western blotting, enzyme linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and immunofluorescence (IF). RESULTS: Behavioral experiments investigated the potential beneficial effects of MOTS-c on multiple acute and chronic inflammatory pain in mice. The results showed that MOTS-c treatment produced potent anti-allodynic effects in formalin-induced acute inflammatory pain, capsaicin-induced nocifensive behaviors and λ-Carrageenan/CFA-induced chronic inflammatory pain model. Further mechanistic studies revealed that central MOTS-c treatment significantly ameliorated CFA-evoked the release of inflammatory factors and activation of glial cells and neurons in the spinal dorsal horn. Moreover, peripheral MOTS-c treatment reduced CFA-evoked inflammatory responses in the surface structure of hindpaw skin, accompanied by inhibiting excitation of peripheral calcitonin gene-related peptide (CGRP) and P2X3 nociceptive neurons. CONCLUSIONS: The present study indicates that MOTS-c may serve as a promising therapeutic target for inflammatory pain.


Assuntos
Capsaicina , Dor Crônica , Camundongos , Masculino , Animais , Carragenina/toxicidade , Carragenina/uso terapêutico , Capsaicina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hiperalgesia/metabolismo , Dor Crônica/complicações , Adjuvante de Freund/toxicidade , Formaldeído/toxicidade , Formaldeído/uso terapêutico
9.
Inflammopharmacology ; 32(1): 825-847, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057565

RESUMO

Medicinal plants play a pivotal role in the prevention of chronic non-communicable diseases including arthritis. Despite the traditional use of Asparagus dumosus in arthritis, it has not been studied yet for its effectiveness in arthritis. This study was aimed to explore the antiarthritic potential of A. dumosus in formaldehyde and complete Freund's adjuvant (CFA)-induced arthritic rats. Body weight, arthritic index, hepatic oxidative stress, hematological, biochemical and inflammatory markers were assessed using ELISA, whilst qRT-PCR studies were carried out for the mRNA expression of IL-1b, IL-6, RANKL, OPG, TNF-α and COX-2 genes. GCMS and HPLC analysis were performed to identify the secondary metabolites of A. dumosus. From day 8 to 28 post-administration of formaldehyde and CFA, oral administration of A. dumosus (600, 300 and 150 mg/kg) showed a noteworthy improvement (p < 0.001) in the body weights, immune organ weights, serum levels of rheumatoid (RA) factor, C-reactive protein, TNF-α and IL-6 levels in arthritic rats similar to the effect of piroxicam and methotrexate. Subsequently, the administration of A. dumosus to formaldehyde and CFA-challenged rats, caused a marked decrease (p < 0.001) in the mRNA expression of IL-1b, IL-6, OPG, RANKL, TNF-α and COX-2 genes in treated rats. Likewise, when assessed for antioxidant potential, A. dumosus produced a pronounced (p < 0.001) reduction in malondialdehyde (MDA) levels and hydrogen peroxide (H2O2) production, whilst a dose-dependent (p < 0.001) increase in catalase (CAT) and superoxide dismutase (SOD) activities was recorded. GCMS profiling of A. dumosus presented benzaldehyde, 3-hydroxy-4-methoxy-, 1-decanol and undecane as plant compositions, whereas HPLC fingerprinting displayed quercetin, benzaldehyde, 3-hydroxy-4-methoxy-, gallic acid and cinnamic acid as plants constituents. These results depict that A. dumosus possesses anti-arthritic effect mediated possibly through attenuation of arthritic indices, chronic inflammatory and oxidative stress biomarkers along with down-regulation in the mRNA expression of arthritic candid genes.


Assuntos
Artrite , Fator de Necrose Tumoral alfa , Animais , Ratos , Fator de Necrose Tumoral alfa/genética , Benzaldeídos , Ciclo-Oxigenase 2/genética , Interleucina-6 , Adjuvante de Freund , Peróxido de Hidrogênio , Estresse Oxidativo , Biomarcadores , Formaldeído , RNA Mensageiro/genética
10.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952941

RESUMO

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Assuntos
Cálcio , Dinoprostona , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Adjuvante de Freund/toxicidade , Adjuvante de Freund/metabolismo , Gânglios Espinais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dor
11.
Life Sci ; 336: 122283, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993094

RESUMO

Chronic temporomandibular joint (TMJ) pain profoundly affects patients' quality of life. Trigeminal tumor necrosis factor-α (TNFα) plays a pivotal role in mediating TMJ pain in mice, yet the underlying epigenetic mechanisms remain enigmatic. To unravel these epigenetic intricacies, we employed a multifaceted approach. Hydroxymethylated DNA immunoprecipitation (hMeDIP) and chromatin immunoprecipitation (ChIP) followed by qPCR were employed to investigate the demethylation of TNFα gene (Tnfa) and its regulation by ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in a chronic TMJ pain mouse model. The global levels of 5-hydroxymethylcytosine (5hmc) and percentage of 5hmc at the Tnfa promoter region were measured in the trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) following complete Freund's adjuvant (CFA) or saline treatment. TET1 knockdown and pain behavioral testing were conducted to ascertain the role of TET1-mediated epigenetic regulation of TNFα in the pathogenesis of chronic TMJ pain. Our finding revealed an increase in 5hmc at the Tnfa promoter region in both TG and Sp5C of CFA-treated mice. TET1 was upregulated in the mouse TG, and the ChIP result showed TET1 direct binding to the Tnfa promoter, with higher efficiency in the CFA-treated group. Immunofluorescence revealed the predominant expression of TET1 in trigeminal neurons. TET1 knockdown in the TG significantly reversed CFA-induced TNFα upregulation and alleviated chronic TMJ pain. In conclusion, our study implicates TET1 as a vital epigenetic regulator contributing to chronic inflammatory TMJ pain via trigeminal TNFα signaling. Targeting TET1 holds promise for epigenetic interventions in TMJ pain management.


Assuntos
Artralgia , Proteínas de Ligação a DNA , Articulação Temporomandibular , Gânglio Trigeminal , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Epigênese Genética/genética , Proteínas de Ligação a DNA/metabolismo , Gânglio Trigeminal/fisiopatologia , Artralgia/induzido quimicamente , Artralgia/fisiopatologia , Articulação Temporomandibular/fisiopatologia , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Adjuvante de Freund/farmacologia , Regulação para Cima/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Silenciamento de Genes , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos
12.
Int J Biol Macromol ; 258(Pt 1): 128776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114014

RESUMO

For the first time, the co-delivery of chloroquine phosphate and flavopiridol by intra-articular route was achieved to provide local joint targeting in Complete Freund's Adjuvant-induced arthritis rat model. The presence of paired-bean structure onto the dispersed oil droplets of o/w nanosized emulsions allows efficient entrapment of two drugs (85.86-96.22 %). The dual drug-loaded emulsions displayed a differential in vitro drug release behavior, near normal cell viability in MTT assay, better cell uptake (internalization) and better reducing effect of mean immunofluorescence intensity of inflammatory proteins such as NF-κB and iNOS at in vitro RAW264.7 macrophage cell line. The radiographical study, ELISA test, RT-PCR study and H & E staining also indicated a reduction in joint tissue swelling, IL-6 and TNF-α levels diminution, fold change diminution in the mRNA expressions for NF-κB, IL-1ß, IL-6 and PGE2 and maintenance of near normal histology at bone cartilage interface respectively. The results of metabolomic pathway analysis performed by LC-MS/MS method using the rat blood (plasma) collected from disease control and dual drug-loaded emulsions treatment groups revealed a new follow-up study to understand not only the disease progression but also the formulation therapeutic efficacy assessment.


Assuntos
Artrite Experimental , Quitosana , Cloroquina/análogos & derivados , Flavonoides , Piperidinas , Ratos , Animais , NF-kappa B/metabolismo , Adjuvante de Freund/efeitos adversos , Quitosana/uso terapêutico , Interleucina-6 , Cromatografia Líquida , Emulsões/efeitos adversos , Seguimentos , Artrite Experimental/tratamento farmacológico , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia
13.
Brain Res Bull ; 206: 110863, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145759

RESUMO

Chronic pain can induce not only nociceptive but also depressive emotions. A previous study demonstrated that betaine, a commonly used nutrient supplement, has an anti-nociceptive effect, but whether betaine can alleviate chronic pain-induced depressive emotion is elusive. Our current study found that betaine administration significantly eliminated complete Freund's adjuvant (CFA)-induced pain-related depressive-like behaviour. Mechanistically, betaine treatment inhibited microglia and astrocyte activation. Furthermore, betaine significantly promoted the transition of microglia from the M1 to the M2 phenotype, as well as the transition of astrocytes from the A1 to the A2 phenotype. Additionally, the release of pro-inflammatory factors such as IL-18, IL-1ß and IL-6 and anti-inflammatory factors such as IL-10 in the hippocampus induced by CFA were also reversed by betaine administration. Overall, betaine has therapeutic effects on pain-related depressive-like phenotypes caused by CFA, possibly through altering the polarization of microglia and astrocytes to reduce neuroinflammation.


Assuntos
Dor Crônica , Microglia , Camundongos , Animais , Betaína/efeitos adversos , Astrócitos , Adjuvante de Freund/toxicidade , Inflamação/genética
14.
Mol Med Rep ; 29(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947174

RESUMO

The heat shock cognate 71 kDa protein (Hsc70) is a stress­inducible ATPase that can protect cells against harmful stimuli. Transient receptor potential vanilloid 1 (TRPV1) is a well­documented nociceptor. Notably, Hsc70 can inhibit TRPV1 expression and function, suggesting that Hsc70 may have pain regulation potential. However, the role of Hsc70 in stress­induced hyperalgesia remains unclear. In the present study, the participation of Hsc70 and its regulator microRNA (miR)­3120 were investigated in forced swim (FS) stress­induced mechanical hyperalgesia in rats in an inflammatory state. Complete Freund's adjuvant (CFA) hind paw injection was performed to induce inflammatory pain in rats (CFA rats). Furthermore, in FS + CFA rats, FS stress was performed for 3 days before CFA injection. The levels of Hsc70, miR­3120 and their downstream molecule TRPV1 were measured in the dorsal root ganglion (DRG) with western blotting, immunofluorescence, reverse transcription­quantitative polymerase chain reaction and fluorescence in situ hybridization. The results revealed that FS stress significantly exacerbated CFA­induced mechanical pain. Furthermore, CFA upregulated Hsc70 and TRPV1 expression, which was partially inhibited or further enhanced by FS stress, respectively. In FS + CFA rats, intrathecal injection of a lentiviral vector overexpressing Hsc70 (LV­Hsc70) could decrease TRPV1 expression and improve the mechanical pain. Additionally, the expression levels of miR­3120, a regulator of Hsc70, were markedly upregulated on day 3 following FS stress. Finally, miR­3120 was identified to be colocalized with Hsc70 and expressed in all sizes of DRG neurons. In CFA rats, DRG injection of miR­3120 agomir to induce overexpression of miR­3120 resulted in similar TRPV1 expression and behavioral changes as those caused by FS stress, which were abolished in the presence of LV­Hsc70. These findings suggested that miR­3120/Hsc70 may participate in FS stress­induced mechanical hyperalgesia in rats in an inflammatory state, possibly via disinhibiting TRPV1 expression in the DRG neurons.


Assuntos
Hiperalgesia , MicroRNAs , Animais , Ratos , Adjuvante de Freund/efeitos adversos , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Hiperalgesia/induzido quimicamente , Hibridização in Situ Fluorescente , Inflamação/induzido quimicamente , MicroRNAs/genética , MicroRNAs/metabolismo , Dor/genética , Dor/metabolismo , Ratos Sprague-Dawley , Canais de Cátion TRPV/metabolismo
15.
Rheum Dis Clin North Am ; 50(1): 73-77, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37973289

RESUMO

Carl M. Pearson was an energetic and exceptional physician-scholar-leader who founded, established, and broadened the Divisions of Rheumatology at University of California in Los Angeles (UCLA) beginning in 1956. His studies to induce myositis by injecting muscle saturated with the heat-killed tubercle bacillus, an emulsifier, and mineral oil (Freund's adjuvant) enabled his report that polyarthritis occurred with Freund's adjuvant alone in certain strains of rat and mice. This model of adjuvant arthritis allowed the next generation of studies to assess therapies for autoimmune diseases.


Assuntos
Artrite Experimental , Doenças Autoimunes , Ratos , Camundongos , Humanos , Animais , Adjuvante de Freund , Óleo Mineral , Los Angeles
16.
Int Immunopharmacol ; 127: 111411, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38113689

RESUMO

Proinflammatory cytokines are crucial contributors to neuroinflammation in the development of chronic pain. Here, we identified il16, which encodes interleukin-16 (IL-16), as a differentially expressed gene in spinal dorsal horn of a complete Freund's Adjuvant (CFA) inflammatory pain model in mice by RNA sequencing. We further investigated whether and how IL-16 regulates pain transmission in the spinal cord and contributes to the development of inflammatory pain hypersensitivity. RNA sequencing and bioinformatics analysis revealed elevated IL-16 transcript levels in the spinal dorsal horn after CFA injection. This increase was further confirmed by qPCR, immunofluorescence, and western blotting. Knockdown of IL-16 by intrathecal injection of IL-16 siRNA not only attenuated CFA-induced mechanical and thermal pain hypersensitivity, but also inhibited enhanced c-fos expression and glial activation in the spinal dorsal horn in male mice injected with CFA. Moreover, exogenous IL-16 induced nociceptive responses and increased c-fos expression and glial activation in spinal dorsal horn. This effect was largely impaired when CD4, the binding receptor for IL-16, was inhibited. In addition, CD4 expression was upregulated in the spinal dorsal horn after CFA injection and CD4 was present in microglia and in contact with astrocytes and activated spinal neurons. Taken together, these results suggest that enhanced IL-16-CD4 signaling triggers pain and activates microglia and astrocytes in the spinal dorsal horn, thus contributing to inflammatory pain. IL-16 may serve as a promising target for the treatment of inflammatory pain.


Assuntos
Hiperalgesia , Interleucina-16 , Camundongos , Masculino , Animais , Interleucina-16/genética , Interleucina-16/metabolismo , Interleucina-16/farmacologia , Hiperalgesia/metabolismo , Dor/induzido quimicamente , Corno Dorsal da Medula Espinal/metabolismo , Medula Espinal , Neurônios , Adjuvante de Freund , Inflamação/metabolismo
17.
J Transl Med ; 21(1): 896, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072957

RESUMO

BACKGROUND: Attentional deficits are among the most common pain-induced cognitive disorders. Pain disrupts attention and may excessively occupy attentional resources in pathological states, leading to daily function impairment and increased disability. However, the neural circuit mechanisms by which pain disrupts attention are incompletely understood. METHODS: We used a three-choice serial reaction time task (3CSRTT) to construct a sustained-attention task model in male C57BL/6J mice. Formalin or complete Freund's adjuvant was injected into a paw to establish an inflammatory pain model. We measured changes in 3CSRTT performance in the two inflammatory pain models, and investigated the neural circuit mechanisms of pain-induced attentional deficits. RESULTS: Acute inflammatory pain impaired 3CSRTT performance, while chronic inflammatory pain had no effect. Either inhibition of the ascending pain pathway by blockade of the conduction of nociceptive signals in the sciatic nerve using the local anesthetic lidocaine or chemogenetic inhibition of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) neurons in the lateral parabrachial nucleus (LPBN) attenuated the acute inflammatory pain-induced impairment of 3CSRTT performance, while chemogenetic activation of CaMKIIα neurons in the LPBN disrupted the 3CSRTT. Furthermore, the activity of CaMKIIα neurons in the LPBN was significantly lower on Day 2 after complete Freund's adjuvant injection than on the day of injection, which correlated with the recovery of 3CSRTT performance during chronic inflammatory pain. CONCLUSIONS: Activation of excitatory neurons in the LPBN is a mechanism by which acute inflammatory pain disrupts sustained attention. This finding has implications for the treatment of pain and its cognitive comorbidities.


Assuntos
Dor Crônica , Núcleos Parabraquiais , Camundongos , Animais , Masculino , Núcleos Parabraquiais/fisiologia , Adjuvante de Freund/metabolismo , Adjuvante de Freund/farmacologia , Camundongos Endogâmicos C57BL , Neurônios , Atenção
18.
Sci Rep ; 13(1): 22057, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086903

RESUMO

Gene plasticity during myogenous temporomandibular disorder (TMDM) development is largely unknown. TMDM could be modeled by intramuscular inflammation or tissue damage. To model inflammation induced TMDM we injected complete Freund's adjuvant (CFA) into masseter muscle (MM). To model tissue damage induced TMDM we injected extracellular matrix degrading collagenase type 2 (Col). CFA and Col produced distinct myalgia development trajectories. We performed bulk RNA-seq of MM to generate gene plasticity time course. CFA initiated TMDM (1d post-injection) was mainly linked to chemo-tacticity of monocytes and neutrophils. At CFA-induced hypersensitivity post-resolution (5d post-injection), tissue repair processes were pronounced, while inflammation was absent. Col (0.2U) produced acute hypersensitivity linked to tissue repair without inflammatory processes. Col (10U) generated prolonged hypersensitivity with inflammatory processes dominating initiation phase (1d). Pre-resolution phase (6d) was accompanied with acceleration of expressions for tissue repair and pro-inflammatory genes. Flow cytometry showed that immune processes in MM was associated with accumulations of macrophages, natural killer, dendritic and T-cells, further confirming our RNA-seq findings. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, TMDM resolution was preceded with muscle cell and extracellular matrix repairs, an elevation in immune system gene expressions and distinct immune cell accumulations in MM.


Assuntos
Músculo Masseter , Mialgia , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Inflamação , Adjuvante de Freund/efeitos adversos
19.
Biol Direct ; 18(1): 85, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071369

RESUMO

INTRODUCTION: Inflammation and nerve injury promote astrocyte activation, which regulates the development and resolution of pain, in the spinal dorsal horn. APOE regulates lipid metabolism and is predominantly expressed in the astrocytes. However, the effect of astrocytic APOE and lipid metabolism on spinal cellular function is unclear. This study aimed to investigate the effect of spinal Apoe on spinal cellular functions using the complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model. METHODS: After intraplantar injection of CFA, we assessed pain behaviors in C57BL6 and Apoe knockout (Apoe-/-) mice using von Frey and Hargreaves' tests and analyzed dorsal horn samples (L4-5) using western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and RNA sequencing. RESULTS: The Apoe levels were markedly upregulated at 2 h and on days 1 and 3 post-CFA treatment. Apoe was exclusively expressed in the astrocytes. Apoe-/- mice exhibited decreased pain on day 1, but not at 2 h, post-CFA treatment. Apoe-/- mice also showed decreased spinal neuron excitability and paw edema on day 1 post-CFA treatment. Global transcriptomic analysis of the dorsal horn on day 1 post-CFA treatment revealed that the differentially expressed mRNAs in Apoe-/- mice were associated with lipid metabolism and the immune system. Astrocyte activation was impaired in Apoe-/- mice on day 1 post-CFA treatment. The intrathecal injection of Apoe antisense oligonucleotide mitigated CFA-induced pain hypersensitivity. CONCLUSIONS: Apoe deficiency altered lipid metabolism in astrocytes, exerting regulatory effects on immune response, astrocyte activation, and neuronal activity and consequently disrupting the maintenance of inflammatory pain after peripheral inflammation. Targeting APOE is a potential anti-nociception and anti-inflammatory strategy.


Assuntos
Apolipoproteínas E , Hiperalgesia , Metabolismo dos Lipídeos , Dor , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Adjuvante de Freund/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamação , Dor/induzido quimicamente , Dor/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Camundongos Knockout para ApoE
20.
Front Immunol ; 14: 1239592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965323

RESUMO

Persistent inflammation and associated pain significantly impact individuals' quality of life, posing substantial healthcare challenges. Proinflammatory cytokines, released by activated macrophages, play crucial roles in the development of chronic inflammatory conditions such as rheumatoid arthritis. To identify and evaluate potential therapeutic interventions targeting this process for mitigating inflammation and pain, we created myeloid cell-specific knockout of Vamp3 (vesicle-associated membrane protein 3) mice (Vamp3 Δmyel) by crossing LysM-Cre mice with newly engineered Vamp3flox/flox mice. Bone marrow-derived macrophages and peritoneal resident macrophages from Vamp3 Δmyel mice exhibited a significant reduction in TNF-α and IL-6 release compared to control mice. Moreover, Vamp3 deficiency led to decreased paw edema and ankle joint swelling induced by intraplantar injection of complete Freund's adjuvant (CFA). Furthermore, Vamp3 depletion also mitigated CFA-induced mechanical allodynia and thermal hyperalgesia. Mechanistically, Vamp3 loss ameliorated the infiltration of macrophages in peripheral sites of the hind paw and resulted in reduced levels of TNF-α and IL-6 in the CFA-injected paw and serum. RT-qPCR analysis demonstrated downregulation of various inflammation-associated genes, including TNF-α, IL-6, IL-1ß, CXCL11, TIMP-1, COX-2, CD68, and CD54 in the injected paw at the test day 14 following CFA administration. These findings highlight the novel role of Vamp3 in regulating inflammatory responses and suggest it as a potential therapeutic target for the development of novel Vamp-inactivating therapeutics, with potential applications in the management of inflammatory diseases.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Animais , Camundongos , Citocinas/metabolismo , Adjuvante de Freund , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Inflamação/tratamento farmacológico , Macrófagos Peritoneais/metabolismo , Dor/induzido quimicamente , Qualidade de Vida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Associada à Membrana da Vesícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...